The role of the cation in antiwear films formed from ZDDP on 52100 steel

نویسندگان

  • Gavin Pereira
  • Andreas Lachenwitzer
  • David Munoz-Paniagua
  • Masoud Kasrai
  • Peter R. Norton
  • Mike Abrecht
چکیده

Phosphorus L-edge and oxygen K-edge X-ray PhotoEmission Electron Microscopy (XPEEM) have been used to characterize the chemical nature of the cation present in tribochemical films via comparison with model Fe and Zn compounds. The results are contrasted to the P L-edge, P K-edge and S K-edge XANES data. The findings suggest that antiwear pads containing long chain zinc polyphosphate glass are formed at the points of asperity contact, and a thin, short chain zinc polyphosphate film is formed where no asperity contact is made. SEM/EDXmeasurements helped to elucidate the distribution of the elements, and strong spatial correlations were observed between P, O, Zn and S in the pads, indicating that they are composed mostly of zinc polyphosphates, especially near the surface. The zinc polyphosphate antiwear pads are characterized by a much lower modulus than that observed on the thin film regions, the latter being characteristic of the substrate steel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially resolved nanoscale chemical and mechanical characterization of ZDDP antiwear films on aluminum–silicon alloys under cylinder/bore wear conditions

Understanding the lubrication of aluminum–silicon (Al–Si) alloys (>18% Si) under conditions similar to those in the cylinder/bore system is vital to determining their applicability to current engine designs. A novel investigation of the location of zinc-dialkyl-dithiophosphate (ZDDPs) antiwear (AW) film formation on an Al–Si alloy has been performed using X-ray absorption near edge structure (X...

متن کامل

Smart materials behavior in phosphates: role of hydroxyl groups and relevance to antiwear films.

The elastic properties of materials under high pressure are relevant to the understanding and performance of many systems of current interest, for example, in geology and tribology. Of particular interest is the origin of the dramatic increase in modulus with increasing pressure, a response which is also called "smart materials behavior." In this context, simple phosphate-containing materials h...

متن کامل

On the mechanism of ZDDP antiwear film formation

Zinc dialkyldithiophosphate additives are used to control wear and inhibit oxidation in almost all engine oils as well as many other types of lubricant. They limit wear primarily by forming a thick, protective, phosphate glass-based tribofilm on rubbing surfaces. This film formation can occur at low temperatures and is relatively indifferent to the chemical nature of the substrate. There has be...

متن کامل

Semiconducting properties of passive films formed on AISI 420 stainless steel in nitric acid solutions

This study focuses on the semiconductor properties of passive films formed on AISI 420 stainless steel immersed in four nitric acid solutions under open circuit potential (OCP) conditions. For this purpose, the passivation parameters and semiconductor properties of passive films were derived from potentiodynamic polarization and Mott–Schottky analysis, respectively. The OCP plots showed that th...

متن کامل

The history and mechanisms of ZDDP

This paper reviews research into the mechanisms of action of the lubricating oil additive, zinc dialkyldithophosphate (ZDDP). The development of the use and research into ZDDP is first charted historically, starting with the additive’s first introduction in engine oils in the late 1930s. Then our current state of knowledge of each of the main facets of ZDDP behaviour both in solution and at met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006